Af hwad sagt är, hänledes följande:
2
s
2 a n + ÷ d n 2 ÷ + d n 2 {\displaystyle 2an{+ \atop \div }{dn^{2}}{\div \atop +}dn \over 2}
4
a + u 2 ÷ + a 2 + ÷ u 2 2 d {\displaystyle {a+u \over 2}{\div \atop +}{{a^{2}}{+ \atop \div }u^{2} \over 2d}}
6
u
a 2 + ÷ 2 d s ÷ + a d + ÷ 1 2 d 2 ÷ + 1 2 d {\displaystyle {\sqrt {{a^{2}}{+ \atop \div }2ds{\div \atop +}ad{+ \atop \div }{1 \over 2}{d^{2}}{\div \atop +}{1 \over 2}d}}}
8
1 2 n a + 1 2 n u {\displaystyle {1 \over 2}na+{1 \over 2}nu}
10
2 s ÷ a n n = 2 s n ÷ a {\displaystyle {{2s\div an} \over n}={2s \over n}\div a}